Multi-arm trials are particularly valuable forms of evidence for network meta-analysis (NMA). Trial results are available either as arm-level summaries, where effect measures are reported for each arm or as contrast-level summaries, where the differences in effect between arms compare with the control arm chosen for the trial. We show that likelihood-based inference in both contrast-level and arm-level formats is identical if there are only two-arm trials, but that if there are multi-arm trials, results from the contrast-level format will be incorrect unless correlations are accounted for in the likelihood. We review Bayesian and frequentist software for NMA with multi-arm trials that can account for this correlation and give an illustrative example of the difference in estimates that can be introduced if the correlations are not incorporated. We discuss methods of imputing correlations when they cannot be derived from the reported results and urge trialists to report the standard error for the control arm even if only contrast-level summaries are reported.
Source: Research Synthesis Methods